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“Ion-Selective Ceramics for Waste Separations” aims to develop an electrochemical approach to 
remove fission product waste (e.g., Cs+) from the LiCl-KCl molten salts used in the pyroprocessing of 
spent nuclear fuel.  Consolidation and concentration of contaminants such as Cs+ and Sr2+ in molten salts 
would substantially reduce the volume of high level waste that must be packaged for disposal. We 
recently generated two reports describing the laboratory-scale application of ion-selective ceramics
(LLTO (Li5La3Ta2O12) and NaSICON-type materials (e.g., KZr2P3O12)) as “filters” to recycle 500oC LiCl-
KCl molten salts and concentrate Cs+ contaminants in a reduced volume of salt.1,2 Under electrochemical 
bias, Li+ and K+ were selectively transported across the membrane to make purified salt, while Cs+

contaminants were blocked from transport. Na+ ions are also expected to be transported, while divalent 
contaminants,3 such as Sr2+, Ba2+, or Sm2+ would also be expected to be excluded, concentrated in the 
waste salt.  Charge balance of these reactions was maintained through the oxidation and reduction of 
copper at the anode and cathode of the cell, respectively. This process is schematically illustrated in 
Figure 1, though, the copper-based charge balance chemistry is
replaced by chlorine/chloride reduction/oxidation. In Figure 1, a 
closed-end ceramic tube separates volumes of contaminated and 
non-contaminated salt, allowing selective transport of Li+ and K+

through the ceramic.  Balancing cation transport with chlorine 
reduction results in increased volume of purified LiCl-KCl salt 
outside the tube, and concentrated CsCl salt inside the tube. The 
focus of effort in FY15 was to identify critical technical issues 
associated with scaling this approach for potential industrial use.

In considering the technical challenges of implementing this 
process for pyroprocessing salt remediation, a number of 
assumptions were made. First we assume an annual salt waste
(LiCl-KCl, containing 12% NaCl) production volume of 15 metric 
tons (MT), based on projections by Simpson,3,4 and this waste is 
conservatively assumed to have a representative (though not 
expressly definitive) contamination level of 2.5% CsCl3

(accounting for other contaminants would slightly decrease the 
required electrochemical capacity of the system). The limit for 
CsCl concentration was determined by estimating the melting 
temperature (<500oC) of the Cs-enriched molten salt,5 leading to an estimated target waste CsCl content 
as high as 60 mole percent CsCl (~80 weight percent).  This dramatic consolidation of contaminant would
require transporting more than 99% of the Li+, K+, and Na+ ions out of the waste salt.   Applying a current 
density of 100mA/cm2, utilizing 50 waste-filled ceramic separator tubes (25 cm long, 4 cm diameter), and 
running 12 hours daily, 15MT of waste salt could be treated in under 1 year (11.7 months). This 
timeframe is proportionately decreases if the number (or size) of ceramic tubes (and electrodes) is 
increased, the number of hours per day is increased, or the current density is increased.

There are several critical design elements that must be considered to effectively integrating these 
ceramic tubes, molten salts, electrodes, and charge compensating chemistry into a functional reactor.  
First, a vessel capable of maintaining an isolated atmosphere, possibly a highly corrosive chlorine 
atmosphere, must be created to contain the assembly. Candidate formable steel alloys may include
Haynes 556 and Haynes 214, available through Haynes, International (Kokomo, IN), and reported to 
exhibit excellent corrosion resistance in chlorine-bearing and chloride molten salt environments at 
temperatures well above the 500oC anticipated working temperature.

Realizing large-scale salt treatment will also require the reliable manufacture of numerous formed 
ceramics, ideally closed end tubes. We have consulted with representatives from Ceramatec, Inc (Salt 
Lake City, UT), who specialize in alkali-conducting NaSICON ceramic materials, similar to the KSICON 
ceramics explored in this program.  As shown in Figure 2, they have developed production-scale 
capabilities to create a range of NaSICON ceramic discs, plates, and tubes, including closed-end tubes, 

Fig. 1. Schematic of process to use a 
closed-end ceramic tube to isolate 
Cs-contamination from LiCl-KCl 
molten salt.  Cl- ions (present in all 
salts) not shown for clarity.
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adhering to strict tolerances for ceramic thickness, uniformity, and phase chemistry.  Ceramatec would be 
a logical partner in the production of formed KSICON or LLTO ceramics for use in this technology.

Another key concern is the incorporation of chemically, thermally, 
and radioactively stable seals, particularly if a chlorine atmosphere is to 
be maintained in the reactor.  Seals will also need to electrically isolate 
the anode and cathode and effectively join reaction vessel ports with 
components such as salt inlet plumbing, thermocouples, gas inlets, 
overpressure relieve connections, and pressure gauges. Ultimately, 
selection of the appropriate glass seals with system-compatible thermal 
expansion, chemical inertness, and thermal stability will require specific 
technical study and evaluation. Phosphate, borate, and silicate glass seals 
used for solid oxide fuel cells may prove to be qualified candidates, as 
these materials are commonly used to create metal-metal and metal-
ceramic seals, are suitable for temperatures exceeding 500oC, and are 
stable against highly oxidizing environments.6,7   

Achieving high rate electrochemical reactions will require high 
surface area anodes and cathodes that are stable against corrosion in 
chlorine and molten chloride salt environments. The corrosion resistant 
Haynes alloys mentioned above would logical choices, readily 

formed/welded and compatible with the aggressive environment and potential sealing chemistries.  The 
cathode should also be constructed to allow chlorine gas introduction (actively or passively) to the molten 
salt through the electrode, maximizing reactive surface area for ideal reaction kinetics.

The technical issue of electrochemical charge compensation (e.g., chlorine versus copper or other 
suitable metal) should also be carefully considered. The chlorine-mediated approach does provide an 
elegant and relatively straightforward electrochemical strategy, and it does not stand to introduce any new 
chemical contaminants to the waste stream. Chlorine chemistry at 500oC, however, challenges the 
chemical stability and ultimate safety of the system, impacting the selection of every component of the 
reactor and potentially introducing additional development and manufacturing costs.  In contrast, the 
copper-mediated approach eliminates the highly corrosive, potentially hazardous chlorine atmosphere.  It 
does, however, increase the chemical complexity of the system, and copper would have to be removed 
from the final waste salt, perhaps precipitated using lithium and potassium formates as shown previously.1  

Successful adoption of these components and processes is likely to require a graded scale-up 
approach. Although our research-scale efforts have demonstrated feasibility of the approach using lab
scale volumes (typically less than 100g), it would be recommended that the chemical kinetics be 
optimized by scaling to a 1kg pilot scale, ideally utilizing as many of the large-scale components (e.g., 
ceramic tubes, electrodes, etc.) as possible.  In addition, small scale studies of glass sealing stability, 
corrosion resistance of all materials, the chlorine-gas delivery, and ultimately the radiation stability of the 
system must all be explored prior to large scale implementation.  While there is significant promise in the 
use of this technology to reduce waste salt volumes, significant technical development and optimization 
must be done before that promise can be realized.  

1) Spoerke, E. et al. "Ion Selective Ceramics for Waste Separations." (U.S. DOE Office of Nuclear Energy 
2014). 2) Spoerke, E. et al. "Ion Selective Ceramics for Waste Separations:  End of Fiscal Year Project 
Assessment." (US DOE Office of Nuclear Energy 2013). 3) Williamson, M.  (personal communication with E. 
Spoerke) (2015). 4) Simpson, M. Projected Salt Waste Production from a Commercial Pyroprocessing Facility. 
Science and Technology of Nucelar Installations 2013, 1-8 (2013). 5) Sangster, J. & Pelton, A. D. Thermodynamic 
Calculation of Phase Diagrams of the 60 Common-Ion Ternary Systems Containing Cations Li, Na, K, Rb, Cs and 
Anions F, Cl, Br, I. J. Phase. Equilibria 12, 511-537 (1991). 6) Zhu, Q., Peng, L. & Zhang, T. in Fuel Cell 
Electronics Packaging   (eds K Kuang & K Easler) Ch. 2, 33-60 (Springer US, 2007). 7) Paulsen, O. Rigid bonded 
glass ceramic seals for high temperature membrane reactors and solid oxide fuel cells Ph.D. thesis, Norwegian 
University of Science and Technology, (2009).

Fig. 2. a) A closed-end ceramic 
tube (4 cm diameter) and b) 
sheets, discs, and cylinders 
made from NaSICON ceramics.  
Images from Ceramatec, Inc.  
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